Category Archives: Artificial Intelligence

Ars Electronica Festival 2017: Artificial Intelligence

This years Ars Electronica Festival theme is the all present topic of Artificial Intelligence. The Ars Electronica Festival 2017 theme “Artificial Intelligence – The Other I.” focuses on the cultural, psychological, philosophical and spiritual aspects of AI.

As an media and art festival by definition that often uncovers the philosophical background of popular trends and hypes, this years Festival takes up the challenge of looking behind the cultural aspects of the ever-present topic of AI.

The discussion on AI, as the festival title already suggests will bring us a critical discourse on our own identity and existence.

Is AI killing our jobs and taking over many of our traditional working domains, similar to the industrial revolution in the 18th century?
How do we deal with digital personalities or with the social impact of smart machines handling many parts of our daily lives?
The Ars Electronica Festival also questions the acceptance of such super machines and if humans will ever be able to accept them?
Visit the festival in POSTCITY Linz, September 7-11, 2017.

Read more about the principles of AI and machine learning, refer to following Kindle eBook on ‘Applied Artificial Intelligence’.

Astrophysicists use Artificial Intelligence to speed up Analysis of Gravitational Images


SLAC and Stanford university recently announced a breakthrough of using neural networks, one of the base algorithms of Artificial Intelligence, to spped up their data analysis effort. The spacetime data SLAC and Standford analysis is crucial for the understanding of the universe. By using neural networks to analyze those complex distortions in spacetime known as gravitational lenses the Stanford researchers were able to analyze the data 10 million times faster than traditional methods.
The researchers fed a neural network with half a million of images of gravitational lenses, which typically takes a day. Once the training process is finished, the trained AI neural network is capable of detecting similar lenses within a fraction of a second. The precision of the newly introduced Artificial Intelligence based methodology is comparable to the traditional approach that took weeks to finish.

This is another application domain where Artificial Intelligence helps to speed up traditional analysis methods from taking month to less than a second. We can expect that the analysis of spacetime anomalies will gain a lot of traction, now that the analysis process does not take years. Refer to the original press release here.
If you are interested into how artificial neural networks are implemented, read my Kindle eBook on ‘Applied Artificial Intelligence’.