Tag Archives: machine learning

Kaggle: Join the global machine learning and AI community

Around a halve year back I stumbled over Kaggle.com, a vital community portal of Artificial Intelligence and machine learning experts. Kaggle not only encourages people around the world to share thoughts and example data sets on popular machine learning tasks, they also host great AI challenges.

Since I joined the Kaggle community 6 month ago, I was fascinated about the individual challenges that were published. Those challenges range from predicting Mercari product prices over detecting icebergs from radar data to speech recognition tasks.

Many companies such as Google, Mercari or Zillow are hosting challenges where more than thousand of teams try to predict the best results. Often it is unbelievable how those teams solve these complex machine learning tasks.

Besides providing the challenges and the data sets necessary to wake the interest of global leaders within the machine learning and AI community, Kaggle also offers a tremendously powerful kernel execution environment. This execution environment consists of preconfigured Docker containers that were specifically designed for training models. In order to design and execute a machine learning kernel you simply edit the code online (Python, R, Notebook) and execute it within the Kaggle infrastructure.

As Kaggle docker containers are completely preconfigured you save a lot of time to download and prepare your environment.     



Kaggle really pushes the AI community forward in terms of offering a flexible and open platform for executing kernels and to quickly get hands on interesting data sets. The community platform also does a pretty good job in bringing the global community together and stimulates a broader and practical discussion outside the theoretical scientific community.

Besides if you need a quick start tutorial on how to train your first neural network, grab my eBook at Amazon:

Book Review: The Wisdom of Crowds

With the book The Wisdom of Crowds James Surowiecki wrote a fantastic book on the topic why crowds of people can come to interesting decisions in certain situations. Recently crowd reviews, also known as collaborative filtering got quite popular with the appearance of recommendation engines that support customers in deciding which product to choose. Surowiecki explains, by using fascinating historic stories, in which situations crowds were able to solve complex problems. He also highlights how the stock market, as a huge global crowd of trading people, is able to predict the value of businesses and even the outcome of judicial investigations, such as the investigation that followed the Challenger desaster in 1986. The Wisdom of Crowds describes in detail which kind of problems can be solved by using crowd decisions as well as the criteria which define specific situations in which the result of crowd decisions can lead to reasonable results.

With The Wisdom of Crowds James Surowiecki wrote a solid book that explains the dynamics of crowd based decision making by using entertaining stories on each of the highlighted aspects.