
Flexible and Reliable Software Architecture for Industrial User Interfaces

Wolfgang Beer, Bernhard Dorninger, Mario Winterer
Software Competence Center Hagenberg

Softwarepark 21
4232 Hagenberg, AUSTRIA

{wolfgang.beer; bernhard.dorninger; mario.winterer}@scch.at

Abstract

Visualization software plays a major role in control-
ling and monitoring production machines and facilities.
In recent years these software systems have undergone
major changes in terms of flexibility, user interaction and
large scale enterprise integration capabilities. While tra-
ditional machine control systems tend to operate in isola-
tion, modern industrial software systems are integrated in
complex production processes that demand for flexibility
and openness, also in terms of dynamic change of func-
tionality at runtime. Despite this increased demand for
flexibility, the most important requirement for industrial
software systems remains reliability and stable operation.
Within this work we present an architectural approach for
abstracting industrial application models on top of a dy-
namic and modular runtime framework (OSGi) and a flex-
ible application platform (Eclipse). This approach allows
to add functionality at runtime as well as to adapt the ren-
dering of the UI to various technologies.

1. Introduction

With the major success of modern UI concepts in con-
sumer electronics, flexibility, integrity and intuitive user
interaction have found their way into industrial user inter-
faces in recent years. The fast progress of user interface
technology in devices like smartphones and tablet PCs,
has become a driving force for the development of a new
generation of industrial user interfaces. The typical indus-
trial control software is split into a hard realtime subsys-
tem, which is responsible for the direct handling of actu-
ators and sensors, and a non-realtime subsystem for visu-
alization of machine states and for providing a basic user
interface to manipulate process and machine parameters
(HMI). Production machines (e.g., plastic moulding) usu-
ally heavily depend on these configurations, parameters
and operational decisions, as well as on error handling, all
of which is typically covered by human operators. In for-
mer times, such HMIs were barely composed of a set of
control buttons and switches combined with some lamps
for visual feedback. Today, quite complex HMIs consist-

ing of some sort of tangible user interface and a graphical
user interface (GUI) with respective input devices are a
frequent sight. In addition, touchscreens became a com-
mon replacement for the monitor/keyboard/mouse com-
bination over the last decade. Although industrial HMIs
have been using touchscreen interaction for more than
20 years, the introduction of capacitive touchscreen tech-
nology in combination with multitouch user interaction
and gesture recognition has opened the way for a com-
pletely new user experience. Another challenge for the
architecture of industrial user interfaces is the increas-
ing demand of flexibility concerning the dynamic load-
ing of functions, or even the integration of third-party
software (often referred to as Apps or Plug-Ins). Today,
many of these enhancements are integrating with produc-
tion companies’ MES (Manufacturing Execution System)
[16], ERP (Enterprise Resource Planning) [12] or CAQC
(Computer Aided Quality Control) software systems [18].
Often these external software systems offer state-of-the-
art web-based interfaces, so that one can observe great
demand for seamless integration of platform independent
user interface technologies, such as HTML5. Beside in-
creased demand for flexibility and integration of new UI-
technologies, these software systems operate in industrial
environments where reliability is still the most important
requirement. By using OSGi [15] and Eclipse [3] as a ma-
ture and reliable base for our software architecture, we are
able to fulfill the requirement for increased flexibility, as
well as the requirement for a reliable and stable basis. The
remainder of this paper is organized as follows: Section 2
provides a brief overview of efforts in software architec-
tures and technologies for industrial user interfaces and
cites relevant related work. In Section 3, we outline our
architectural approach. Selected aspects of our implemen-
tation are described in more detail in Section 4. Section
5 then discusses open issues and interesting further work.
Finally, Section 6 provides a short conclusion.

2. Related Work

Defining software architectures for the implementation
of user interfaces to control and parameterize industrial
machines and facilities has been a widespread issue over



the last twenty years. As the machine and process control
systems grew significantly in complexity and as the con-
trol software tends to be distributed within several control
units on a typical machine, several research groups work
on the problem of defining flexible and distributed soft-
ware architectures. An early work by Kenneth C. Crater
and Craig E. Goldman [9] on the definition of a distributed
interface architecture for programmable industrial control
systems describes in detail how the user control inter-
face of several control nodes can be distributed by using
a HTML interface in combination with a standard web
server. A more recent work by Richardson et. al. [14]
describes the actual trend of multi-touch user interfaces in
industrial applications and discusses the implications of a
combination with real-time system requirements. Beside
the introduction of multi-touch software frameworks, this
work also defines a set of guidelines for the implementa-
tion of multi-touch user interfaces that can cope with real-
time requirements in industrial control and supervision
applications. An early work by Avouris, Nikolaos M. et
al. [5] discusses the issue of how to design man-machine
interfaces for control and process supervision applications
for cooperating agents. Their work focuses on the inte-
gration of dialog oriented user interfaces into a general
software architecture for agent based control systems. It
indicates the importance of user interaction specifically in
distributed, task oriented control and supervision applica-
tions, which has great relevance for our actual work. In the
domain of reliability and stability requirements of indus-
trial user interfaces, ABB Corporate Research performed
a scientific study in 2009 on defects in three large indus-
trial control applications [6]. The conclusion of this work
was that a high percentage of defects found through the
user interface are actually defects in the underlying busi-
ness logic and middleware software. This statement de-
livers a strong argument for the introduction of industrial
user interfaces that build upon a reliable and flexible soft-
ware architecture.

3. Architectural Approach

The purpose and contribution of this work is to present
an architectural approach for implementing flexible and
reliable applications that implement industrial user inter-
faces for control and supervision of industrial machines
and facilities. The proposed architecture fulfills reliabil-
ity requirements and adds additional flexibility by im-
plementing a specific user interface rendering framework
based on the Eclipse 4 SDK.

3.1 OSGi
The OSGi standard is one of the reference architec-

tures for flexible and reliable plug-in, component-oriented
middleware. It has been defined for the Java program-
ming language and allows dynamic deployment of soft-
ware components, which are referred to as bundles. Bun-
dles can be coupled with other bundles through services

Figure 1. General OSGi system layers

and may be extended by bundle fragments, which are in
fact partial components requiring a host bundle for pro-
viding their functionality. For software updates or bug
fixes, OSGi provides a built-in mechanism to add, remove
or update bundles or fragments at runtime. Besides this,
OSGi also standardizes the lifecycle of bundles and ser-
vices including the process of discovery, binding and in-
teracting with these services. Popular and widely used
implementations include Eclipse Equinox[2] and Apache
Felix[1]. Today, many popular software systems, such as
IBMs Eclipse IDE or the JBoss/Wildfly application server,
are based on OSGi.

Figure 1 shows the general architecture and system lay-
ers of an OSGi application. The gray shaded layers con-
tain the base OSGi framework implementation with its
system services that represent the foundation of a custom
application in the application layer. OSGi system services
provide functionality like bundle and or package man-
agement as well as bundle lifecylcle and permission han-
dling. The application layer above hosts the custom soft-
ware bundles that are combined to an application. Typi-
cally, a custom industrial application implements bundles
that contain the functional logic, bundles that contribute
to the user interface and also bundles that are responsi-
ble for control system connectivity, e.g. providing access
via OPC[17][10]. However, OSGi initially was intended
for headless applications and provides no explicit support
for developing user interfaces. Thus, it is helpful to com-
bine the OSGi framework with a flexible means to ren-
der an abstract user interface model. This combination re-
solves the requirement for flexibility, in terms of integra-
tion of new user interface technologies, such as HTML5
or JavaFX, as well as the requirement for reliability.



Figure 2. Custom industrial application
layer on top of OSGi runtime framework

3.2 Eclipse
One of the most familiar software systems relying on

OSGi is Eclipse [8]. Eclipse is not only a programming
environment but also provides a base framework for in-
teractive appplications known as Eclipse Rich Client Plat-
form (Eclipse RCP). The actual version 4 of Eclipse of-
fers a number of enhancements regarding the definition of
user interfaces. In terms of a layered architecture model
presented in Section 2, Eclipse 4 adds additional abstrac-
tion layers for defining the data model of an application
in combination with its user interface elements, as it is
shown in Figure 2.

TheCustom Presentation Engine as well as the Custom
Application layer highlight all application parts, such as
the custom applications user interface and the custom ap-
plications data model. The Application Framework pro-
vides a base for implementing specific presentation en-
gines. Another valuable improvement is the dependency
injection support which provides application developers
with a comfortable tool to adjust the state of their appli-
cation at runtime by having necessary data objects and
services injected automatically into their implementation
classes. The biggest advantage however is gained by the
so called Eclipse Application Metamodel [7], which de-
fines a structural frame for custom UI applications. Ap-
plication designers use it to create their own conctrete
application models, which represent the required naviga-
tional structure and abstract UI components. In addition,
the metamodel may be enhanced if the default metamodel
is not deemed sufficient. The custom application model
is completely independent of any concrete UI implemen-
tation technology. According to this fact, an appropriate
implementation of the presentation engine is used to ren-
der the user interface of a custom application. Of course,
a specific presentation engine may be reused for applica-
tions sharing the same UI technology. Example of such
renderer implementations exist for Java SWT as well as
for JavaFX, but support for virtually any user interface
technology is feasible. The abstraction from the user inter-

Figure 3. Top level elements of the Eclipse
Application Meta Model

face implementation technology allows one to introduce a
new kind of flexibility by offering various renderers for
different platforms.

The default Eclipse Application Meta Model contains
a number of model elements shown in Figure 3 with the
most important ones being discussed below:

• Addons is a list of service objects (Addon) that are
instantiated at system startup. An Addon has no vi-
sual representation but it can take influence on any
part of the system. Every Addon contains an URL
that uniquely denotes the Java class that implements
the service and its behavior.

• Commands are abstract representations of user trig-
gered tasks that can be performed by the system, like
Start Engine or Show Help. At that level, it is nei-
ther important how the task is triggered nor where
the concrete implementation of the system behaviour
resides. Both aspects are modeled using Handlers
and BindingTables.

• Handlers refer to a concrete piece of code that is
invoked when a certain command is executed. It
is possible to have multiple handlers per command,
but only one handler will be active at the same time
according to the current application context. Some
components like Window or Part (see below) can de-
fine local command handlers and hence override the
behavior of other handlers with the same id that are
defined on a more global level. For example, a Part
might define a custom handler for the Show Help
command which overrides the global handler. When-
ever the corresponding command is executed while
the part is active, the overridden handler will be exe-
cuted instead of the global one.



• BindingTables are used to define a set of user interac-
tion shortcuts and bind them to their corresponding
commands. Whenever a keyboard shortcut is trig-
gered, the current active handler of the corresponding
command will be invoked.

• Windows is the root node of all model objects that
make up the user interface controls. There may be
more than one window per application. Each Win-
dow consists of additional structural components,
like Area or PartStack objects. A PartStack contains
a number of child controls, but is intended to display
only one of them. Of course this is the responsibility
of the presentation engine - it would also be feasi-
ble to implement a special renderer for a PartStack
which is able to display more than one of its children
at a time. A Part object embodies the atomic portion
of the default metamodel. In a machine visualiza-
tion application, this may be a specific screen, for in-
stance. In terms of UI programming it may be a spe-
cific widget container (e.g. a panel) - depending on
how the used presentation engine renders a Part ob-
ject. A Part referes to a Java class that is able to build
up this specific Part’s UI representation. Of course
this implementation class is no more independent of
the used UI technology. In other words, the visual
content of a Part is not modeled anymore rather than
built up in a ”traditional way” depending on the UI
technology used.

An application model is loaded and interpreted at runtime
by the presentation engine which decouples the model
from the concrete user interface toolkit. In addition, the
engine monitors the application model to detect modifica-
tions at runtime and instanly reflect on the displayed user
interface. By customizing or even rewriting the presenta-
tion engine it is possible to use a different user interface
toolkit without the need to adopt the application model it-
self. Therefore, all components of the application relying
on the model only and not on its representation can be
retained. As mentioned before, the Part nodes are user
interface dependent (due to the directly referenced im-
plementation class), so while the application model itself
and also the window definitions can be reused through-
out different toolkits, the parts itself have to be rewritten.
However, even this constraint might be evaded by employ-
ing a solution based on technology agnostic concepts like
UIML[13].

4. Implementation

In this section we provide a brief insights in our efforts
of applying OSGi and Eclipse with a custom presentation
engine for JavaFX to develop an industrial visualization
application framework. Figure 4 depicts the simplified ar-
chitecture of a prototype following our proposed architec-
tural approach.

Figure 4. Architectural Overview of an Ap-
plication Prototype

A visualization application has to provide connectivity
to one or more PLCs to read and write sensor and actua-
tor data as well as alarms. This functionality is wrapped
in headless OSGi bundles and does not depend on Eclipse
or any UI technology. They might be implemented using
technologies like OPC(UA) for communications. These
services are used by the UI bundles, which not only rely
on the OSGi infrastructure, but also on the Eclipse Appli-
cation Framework. Since ”traditional” visualization appli-
cation usually consist of more or less independent screens,
each of these screens could be wrapped in its own bundle -
or a set of bundles if decomposition is helpful. In our case
there is a central bundle, which only hosts the concrete
application model plus some configuration information.
Figure 5 shows an excerpt of such an application model
for our prototypical application.

Besides a number of Addon objects (e.g. for gesture
recognition) and some Command/Handler/Binding defi-
nitions, which have been left out in the figure, the model
consists of one application window, which hosts an Area
node. This area initially is divided into four portions: a
fixed header part, two switchable PartStack objects for
machine screens and a fixed footer part. The header con-
tians functionality like time and date display as well as a
possibility to switch the current machine user. The footer
contains some interaction elements for quick navigation.
The two PartStack objects represent the screen areas A
and B as seen in Figure 6. While Area B contains a
default PartStack implementation, which always displays
only one of its children parts B1..Bn depending on user
selection, we implemented a special renderer for the Area
A PartStack renderer. It allows to slide its children parts
A1..An like desktops on a mobile phone. One such child
part is a machine overview depicted in Figure 7, for ex-
ample.

Being a flexible layer on top of the robust OSGi plat-
form, Eclipse 4 is a perfect base system for a modern user



Figure 5. Example for an extendable struc-
tural application model

Figure 6. Abstract layout structure for a cus-
tom user interface application

Figure 7. The ”Maschinengrafik” screen
Part of our application model - rendered in
JavaFX

interface toolkit like JavaFX. Therefore, we use the third
party OSGi bundle library e(fx)clipse [4], a JavaFX based
eclipse presentation engine. The e(fx)clipse presentation
engine is a facade [11] that delegates to renderers, each
specialized for representing a certain type of model ele-
ment. This flexible approach allows us subclassing in-
dividual renderers to override the presentation of certain
model elements.

An investigation of the default renderers revealed, that
they do not fulfill the user interface requirements of our
prototype. For example, the default renderer for PartStack
shows a tab for each part of the stack, but the require-
ments demanded that all stacked parts are simply rendered
one upon the other without any tabs. In addition, loading
and rendering a single part should not cause the user inter-
face to freeze. Instead, long lasting part loading/rendering
should be pushed to a background process and a progress
indicator should be shown in the meantime. This is a fea-
ture not being supported by the default implementation.
All respective requirements could be fulfilled by subclass-
ing the corresponding default renderers.

5. Open Issues and Further Work

As we are continuously improving the architecture of
industrial software systems in cooperation with our busi-
ness partners, there are still many issues to deal with.
One challenge remaining is to implement a flexible bind-
ing of touch gestures with our abstract custom application
model. At the moment neither the Eclipse 4 base frame-
work, nor our architectural enhancement allows an ap-
plication engineer to bind touch and multi-touch gestures
with selected model actions. In terms of enabling intuitive
user interaction in custom industrial applications this issue
seems to be important for further increasing the flexibility
and productivity in application design. Another challenge
in progress is to provide a user credentials mechanism,
which allows to bind certain rights to application model
elements and their contained widgets.



6. Conclusion

Within this work we presented an architectural ap-
proach for implementing flexible and reliable industrial
user interfaces. A main contribution of our work is that we
have shown the combination of a reliable runtime platform
standard (OSGi) with a flexible application model for dy-
namic rendering within different user interface technolo-
gies based on Eclipse 4 is an appropriate base for indus-
trial HMI applications, especially against the backdrop of
varying customization requirements. Eclipse 4 decouples
the logical model of a visual application from its presenta-
tion by allowing different renderer implementations such
as for JavaFX or HTML5. Although Eclipse is Java based,
one might consider using even non-Java UI technologies
for rendering, such as QT. Our implementation of choice
is efxclipse, which uses JavaFX 2 to build and show UI
components. The use of JavaFX provides another signifi-
cant advantage, since its powerful property binding mech-
anism allows the dynamic and flexible connection of UI
widgets to PLC variables. Another benefit springs from
Eclipse’s base technology OSGi. Its dynamic and modu-
larized nature remarkably eases customization and main-
tenance of applications by enabling the addition and/or re-
placement of functionality at runtime. This also includes
interactive components plus their PLC bindings. With the
further development of the Java language ecosystem it will
be even possible to run our Eclipse/JavaFX based applica-
tions on systems with limited resources.

References

[1] Apache Felix OSGi Container, http://felix.apache.org/,
2013.

[2] Eclipse Equinox OSGi, http://www.eclipse.org/equinox/,
2013.

[3] Eclipse SDK 4.x: The Next Generation Eclipse Platform,
http://www.eclipse.org/eclipse4/, 2013.

[4] e(fx)clipse - JavaFX 2 Tooling and Runtime for Eclipse,
2013.

[5] N. M. Avouris, M. H. V. Liedekerke, G. P. Lekkas, and
L. E. Hall. User interface design for cooperating agents
in industrial process supervision and control applications.
International journal of man-machine studies, 38(5):873–
890, 1993.

[6] P. A. Brooks, B. P. Robinson, and A. M. Memon. An ini-
tial characterization of industrial graphical user interface
systems. In Software Testing Verification and Validation,
2009. ICST’09. International Conference on, pages 11–20.
IEEE, 2009.

[7] F. Budinsky. Eclipse modeling framework: a developer’s
guide. Addison-Wesley Professional, 2004.

[8] M. Clausen, J. Hatje, J. Rathlev, and K. Meyer. Eclipse rcp
on the way to the web. Proceedings of ICALEPCS 2009,
pages 886–888, 2009.

[9] K. C. Crater and C. E. Goldman. Video interface architec-
ture for programmable industrial control systems, Nov. 9
1999. US Patent 5,982,362.

[10] U. Enste and W. Mahnke. OPC unified architecture. at-
Automatisierungstechnik, 59(7):397–404, 2011.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: Abstraction and reuse of object-oriented
design. ECOOP93Object-Oriented Programming, pages
406–431, 1993.

[12] H. Liang, N. Saraf, Q. Hu, and Y. Xue. Assimilation of en-
terprise systems: the effect of institutional pressures and
the mediating role of top management. Mis Quarterly,
31(1):59–87, 2007.

[13] U. OASIS, T. Committee, et al. Oasis user interface
markup language (uiml) tc.

[14] T. Richardson, L. Burd, and S. Smith. Guidelines for
supporting real-time multi-touch applications. Software:
Practice and Experience, 2013.

[15] The OSGi Alliance. OSGi Service Platform, Core Speci-
fication, Release 5, 2009.

[16] P. Valckenaers and H. Van Brussel. Holonic manufacturing
execution systems. CIRP Annals-Manufacturing Technol-
ogy, 54(1):427–432, 2005.

[17] L. Zheng and H. Nakagawa. OPC (OLE for process con-
trol) specification and its developments. In SICE 2002.
Proceedings of the 41st SICE Annual Conference, vol-
ume 2, pages 917–920. IEEE, 2002.

[18] X. Zheng and D. Chen. Computer aided quality control
system for manufacturing process. In Intelligent Con-
trol and Automation, 2004. WCICA 2004. Fifth World
Congress on, volume 3, pages 2819–2823. IEEE, 2004.


