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Abstract—Remote access to plant/machine HMIs has always
been an area of great interest. A broad range of well-established
solutions is available to fulfill the various tasks from remote
operation to remote maintenance (e.g., VNC). Depending on the
regarded solution, there are more or less strong demands on the
respective client device. In the course of the gaining popularity
of cloud computing-especially the gaming on demand sector-a
potentially attractive alternative arises with remote rendering of
applications based on video streaming. In our paper we provide
insights in our efforts of developing a first prototype of a such a
video streaming based solution and discuss the suitability of the
approach in an industrial context.

Index Terms—remote rendering, remote maintenance, remote
access, HMI applications, video encoding, streaming

I. INTRODUCTION

Industrial machine control systems and networked, inter-
connected industrial plant and facility automation systems may
involve a large amount of realtime digital control units as well
as human machine interfaces (HMI). The processing power
of such digital systems range from low-level 8 bit micro
controller units, over programmable logic controls (PLCs)
to full scale 64-bit servers that handle the connection to a
company’s enterprise resource planning (ERP) and production
planning systems (PPS). Production machines (e.g., plastic
moulding) usually heavily depend on configurations, parame-
ters and operational decisions, as well as on error handling,
all of which is typically covered by human operators. Such a
machine is usually equipped with its own HMI, which allows
an operator to supervise, configure and control the production
process. In former times, such HMIs were barely composed
of a set of control buttons and switches combined with
some lamps for visual feedback. Today, quite complex HMIs
consisting of some sort of tangible user interface and a graph-
ical user interface (GUI) with respective input devices are a
frequent sight. In addition, touchscreens became a common re-
placement for the monitor/keyboard/mouse combination over
the last decade. With the broad emergence of multi-touch
capable screens in consumer devices, such as smartphones
and tablets, solutions based on multi-touch technology are
becoming increasingly popular in industrial applications, too.

Due to this and considering the fact that GUI software has
become increasingly complex over the years involving effects
and animations, demands concerning graphics hardware have
grown as well. To render a user interface onto such a mounted
touchscreen, the machine has to include an extra CPU (or at
least share a CPU with the PLC), a high end graphics card with
3D acceleration support and enough memory to render to a
given screen resolution. Equipping each machine with its own
private GUI terminal has thus become a non negligible cost
factor, especially with smaller production machines in a vendor
company’s low price segment (relative cost of GUI related to
cost of whole machine). This weighs even more considering
that large plants may consist of dozens to hundreds of similar
production machines.

Furthermore, there is the noticeable fact that in a high
number of cases these GUI solutions are seldom used during
operation. In highly automated production environments, pro-
duction machines are once set up before running continuously
for a longer period of time. Typically, one machine operator
is responsible for a large number of machines, but only
needs to interact when the production process has to be
altered or machine faults occur. This implies that a locally
available but also extensive GUI solution might be a waste of
resources. Of course there are special solutions for large plants
like SCADA/guidance systems or Manufacturing Execution
Systems (MES), but usually these systems do not cover
the rarely needed details of a machine rather than a broad
overview. In addition, these solutions are usually located in
a control stand. Operating and parametrizing a machine as
well as fault diagnosis and rectification however generally
necessitates a locally available GUI. Thus a solution providing
a locally available, extensive GUI, but at the same time sparing
expensive hardware would be a considerable option. Remote
Rendering is a promising approach which might fulfill exactly
these demands.

In this work we want to show that in a modern industrial
production facility, where all machines are reliably intercon-
nected by high bandwidth networks, locally rendered GUIs
could be replaced by a remote rendering approach. We hope
to reduce the costs for a single machine, to save energy by
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reducing the need for high-end graphical rendering on local
machines and to provide the GUI application’s functionality
on various devices for human operators.

The remainder of this paper is organized as follows: Section
II provides a brief overview of efforts in remote rendering
and cites relevant related work. In section III, we outline
our approach. Selected aspects thereof are described in more
detail in section IV. Section V then highlights some interesting
performance issues. The following Section VI states the most
important of our open issues and proposes some of our further
work. Finally, section VII provides a short conclusion.

II. RELATED WORK

Rendering and displaying applications on remote computers
is nothing new. The principle of remote rendering has already
been implemented with the first versions of Pixar’s rendering
software Renderman back in the 1980s [1]. Remote mainte-
nance systems have been common in industrial environments
for quite a long time now. There are classical desktop sharing
applications to transmit the desktop of a computer to a remote
host, the most prominent one being VNC [2] and its numerous
implementations. Terminal Services allow the private use of
a remote host. Unix/X11 and related operating systems have
always been capable of providing a private terminal to a num-
ber of users, Microsoft Windows provides terminal services
since Windows 2000. More recently, Application Virtualiza-
tion gained popularity. Software applications need not to be
installed on a local computer but are rather transmitted over
the network and then executed locally or even executed on a
centralized application server with the GUI being transmitted
to a remote client. For instance, Citrix’s XenApp [3] is such
a product providing both ways of application virtualization.

However, all the mentioned solutions are often proprietary
and require costly licenses and/or are targeted at a specific
operating system. In any case, the client device is responsible
for fully rendering the UI which requires reasonable graphics
hardware. Solutions employing bitmap based protocols like
VNC are often not suitable for fluid, highly animated appli-
cations. On low performance systems, users often experience
juddering and flickering applications.

An interesting alternative emerged from the field of online
gaming. In [4], Trzuya et al. describe their approach of a
platform for ubiquitous gaming and multimedia. Although
initially focusing on transmitting graphics commands [5] ,
the platform also features an alternative for more under-
performing devices employing the transmission of game output
via video stream [6]. This is of even more interest since
modern low cost devices (like e.g., the Raspberry Pi [7])
tend to have low performance graphics hardware but on the
other hand feature hardware media decoding support. The
idea already has been adopted by traditional remote desktop
approaches. In [8], Simoens et al. describe an extension to
VNC’s Remote Frame Buffer (RFB) protocol, which allows
to transmit video within RFB messages.

Recently, the video streaming based approach gained
broader attention due to provisioning remotely rendered games
in the cloud (Barboza et al. [9], Zhao et al.[10]). Meanwhile,

there is a number of commercial online gaming platforms pro-
viding their services on base of remote rendering technologies
(e.g., OnLive[11], Otoy[12]).

III. APPROACH

A. Goals

The purpose and contribution of this work is to discuss
a remote rendering approach involving video streaming for
replacing local rendered industrial machine GUIs. By prac-
tically implementing this approach, the GUI applications are
no longer executed on the production machine rather than on
a shared rendering server. As the host should be a capable,
high end server device, it will be able to execute and render
a reasonable number of GUI applications. Therefore, the
production machine no longer has its own private GUI, which
in turn allows to spare the respective hardware.

In detail, remote application rendering means to render
individual industrial GUI on a powerful 3D accelerated server
machine, to record and video encode the rendered application
and to constantly stream the encoded video to a listening
client. The client could be a touchscreen mounted on a
machine, within a control room or even mobile devices, such
as Tablet PCs. The workload on the client is reduced to
displaying an encoded video stream and to collect the user
feedback, such as touch events, in order to send the user input
back to the rendering server.

Our particular goals are:
1) Execute and render multiple machine HMI applications

on a central server.
2) Record each application’s output and stream it to the

client using an efficient video format
3) Allow a broad range of application devices to display

application output. Especially low cost devices with built
in video decoding support, like the Raspberry Pi [7],
shall be targeted.

4) The streamed application must behave similar to a
locally executed application, i.e. the platform should
provide a satisfactory user experience.

In the next section, we will describe the steps to fulfill the
specified goals.

B. Conceptual Overview

Our concept of remote rendering consists basically of two
main sequences, which can be further divided into more
detailed steps (see Figure 1 ).

Figure 1. Conceptual Overview

Firstly, there is the upstream sequence which involves the
following steps:
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• Initialize and start the appropriate application
• Record the running application instance
• Encode the recorded application images to a video
• Stream the video over a network

After fulfilling these steps, the client may connect to the video
stream and the user may watch the application output. But of
course, user interaction must be captured and sent back to
this application. This is considered the downstream sequence,
which consists of two more steps.

• Capture user interaction
• Inject user interaction into correct application

Providing a reasonable level of user experience requires a con-
siderable frame-rate, which allows a client to display a smooth
and flicker-free video. The upstream sequence has to utilize
efficient methods of recording and encoding. Employing the
rendering server’s graphics hardware for these steps seems
to be a promising approach. Naturally, also the downstream
sequence needs to be efficient. The higher delays and latency
times become, the more inaccurate application control will
get. Under normal circumstances, i.e. when regarding locally
executed interactive applications, users consider latencies of
less than 0.1 seconds as acceptable for actions deemed as
instantaneous [13]. This value is also demanded in our case.

C. Topology / Architectural Overview
The prototype’s setup resembles a multi-tier topology, which

is depicted in Figure 2.

Figure 2. Architectural Overview

The production machines host the control system (PLC) and
provide the functional interface for the HMI application. There
is no difference if the HMI application would run locally
on the machine’s PLC or on an active built-in terminal. Of
course, this assumes that HMI and PLC employ a network
based communication. In our case, the HMI and the PLC use
remote procedure calls to communicate.

The middle tier is formed by the rendering server. It
provides an interface for clients allowing them to select and
start a HMI application instance for any managed production
machine. Since it will be responsible for recording, encoding
and streaming multiple application instances, it must be an
adequate powerful server. In addition the server has to receive
user feedback and inject the user interactions into the correct
running application instance.

The client side is responsible for decoding and displaying
the video as well as for capturing the user interactions. As
pointed out, it is not necessary to provide really powerful
graphics hardware, but of course should have hardware support
for video decoding.

IV. IMPLEMENTATION

The first step in our work was the implementation of a
basic server prototype being capable of rendering at least a
small number of HMI applications and correctly capturing
the respective client feedback. For the server environment we
have chosen Microsoft Windows 7 while on the clients side
we experimented with Android as well as common desktop
PCs with both Linux and Microsoft Windows. The following
subsections cover a closer look the steps described in the
conceptual overview in the context of our prototype.

A. Upstream sequence

The upstream sequence covers the tasks recording, encoding
and streaming with the encoding being further refined into
more detailed steps. Figure 3 shows the steps and components
involved. In the following subsections we will describe each
task and its steps in a little more detail.

Figure 3. Server tasks and steps

1) Recording: Whenever a HMI application is started it is
rendered on the server’s graphics hardware. This output must
be captured and converted to a video. As high performance
is required, we ought to work close to the hardware and the
operating system. Since have based our prototype on Windows
7, we use the Windows GDI API, which allows to record
any window content on the desktop to device independent
bitmaps (DIB) [14]. In addition, we try to use the Windows 7
Aero Glass feature, which allows to record window output
from applications which are not or only partially visible.
However, working with bitmaps is not suitable for our purpose,
since video streaming has its own formats. Thus, the recorded
bitmaps need to be encoded as a video.

2) Encoding: In this step the recorded frames are converted
into the targeted video format, which is H.264 in our case.
The main reason for our selection of H.264 was mainly due
to its current popularity and the easy availability of codec
software. In addition, the broad hardware support of this
format was another benefit. However, encoding is a key task
in our scenario, it should be handled as efficient as possible.
In this context, the question arose whether usage of graphics
hardware would lead to a significant performance edge. Thus,
we have decided to try two different alternatives:

• GPU encoding based on the Nvidia Encoder NVEnc [15].
The NVEnc generates the video frame unit by using the
graphics hardware. Nvidia provides its own proprietary
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computing architecture (CUDA), so the NVEnc only
works with Nvidia graphic cards. Newer Nvidia graphic
adapters also feature hardware supported video encoding,
which has been promised to be four times faster than the
CUDA variant, while being more efficient in terms of
power consumption.

• CPU encoding based on the library x264 [16]. It is a
free software library that forms the core of the library
libavcodec - part of the multimedia framework ffmpeg
and thus many web video services such as Youtube or
Facebook. It works solely based on CPU algorithms.

Both methods produce Network Abstraction Layer (NAL)
units, which are the building blocks of a H.264 video stream.
The encoder alternatives expect the input frames in the color
space format YV12, a derivate of the YCbCr color space,
which is the standard color space for use in videos. YCbCr is
an encoding format originally developed for television, since
it fits more to human vision than RGB. YV12 is a variant
of YCbCr, which has a different structure making it more
convenient for compression. Thus, we need to preprocess the
recorded DIB frames, which are encoded in the RGB color
space:

1) Color conversion: In a first step the frames have to
be translated from RGB to the YCbCr color space.
The YCbCr (luma, blue difference chroma, red dif-
ference chroma). Before doing the conversion from a
DIB to a YCbCr frame we need to take into account
the orientation of the captured frame, because, DIB
frames typically have a bottom up representation and
video frames usually are top down. After correcting the
orientation the frames can be converted to the YCbCr
color space, which follows a standardized algorithm (see
ITU.BT-601 [17]).

2) Chroma subsampling. In a subsequent step these frames
have to be sub-sampled to the YV12 standard. This
means to maintain the luminance of YCbCr but sub-
sampling the chroma Cb and Cr per square pixels. The
different luma and chroma aspects are grouped together,
which makes this type of encoding much more suitable
for compression. However, since human vision has poor
acuity to color detail (compared to that of luminance),
there is no noticeable difference after the sub-sampling
from the original color space. However, space is saved
by reducing the number of bytes per pixel from 3 bytes
to 1.5 bytes [18]. The resultant frame should look like
this:

Y1...YnCr1...Crn
4
Cb1...Cbn

4
| n mod 4 = 0

Regarding the implementation for the color conversion and
the color subsampling, we have tried two different alternatives:

• OpenCV + Sequential Algorithm: We have used the
implemented color conversion in the OpenCV library
v2.4 [19] which provides two different approaches to
do the color conversion. But OpenCV does not offer
a chroma sub-sampling implementation, so we had to
implement this ourselves.

• FFmpeg: is a powerful and well known multimedia

framework that provides tools and developer libraries.
FFmpeg has the capability of performing the necessary
color conversion and chroma sub-sampling.

FFmpeg has shown to be more efficient for this task, espe-
cially regarding memory management. An alternative could
be to develop a similar algorithm to the one implemented in
FFmpeg, but with explicit GPU support.

After the preprocessing is done, the frame encoding itself
can be performed, which is merely a call to the respective
library. An interesting option offered by encoders is the pos-
sibility to downscale the recorded bitmaps. With this feature
the rendering server may adapt the resolution of the streamed
application to the client’s capabilities.

3) Streaming: Once having a sequence of NAL packets,
one needs an appropriate software component to stream those
packets over the network. A powerful, freely distributable
(LGPL) streaming server is available through the Live555
Streaming Media libraries [20]. Live555 Streaming Media is
a set of C++ libraries that support video streaming standards
such as the Real Time Streaming Protocol (RTSP) [21], which
is the protocol of choice in our prototype. RTSP is a client-
server multimedia presentation control protocol, designed to
address the needs for efficient delivery of streamed multimedia
over IP networks. The NAL packets are sent by the RTSP
protocol which is layered atop of UDP. As UDP does not
guarantee the order of the packages, RTSP mandates to estab-
lish a time stamp when the frames should be displayed. This
measure allows to avoid potential problems such as decoding
and displaying frames in a wrong order. Because of the fact
that we are working with a live video source (i.e. our HMI
applications), the time stamp of a frame is its generation time
and its in our hands to ensure the correct frame order.

Live 555 offers two modes to stream to clients. Multicast
allows to serve multiple clients at once, which is a suitable
method for services like video on demand. In our case, Unicast
is the better choice due to the fact we are aiming for private
peer to peer connection scenario.

B. Downstream sequence

1) Interaction Capturing: Of course, it is not sufficient for
our solution to just display the application. We also need
to gather user interactions and forward them to the correct
application on the rendering server. This could be either
achieved by providing a specifically modified video player,
which collects the user response or a small separate application
doing this for us. For transmitting the interactions to the server
we chose TUIO [22], a protocol developed for capturing and
transmitting interactions from tangible multi-touch surfaces
[23]. On a client device, a TUIO tracker is responsible to
collect interaction events, marshaling them and sending them
to a number of TUIO clients. So the client device acts as a
TUIO server, whilst the rendering server is a client of this
TUIO enabled device listening for user interaction messages.
There are several TUIO tracker implementations available for
free on various platforms.

2) Interaction Injection: We have to make sure that the
feedback of a client device is mapped to the correct HMI
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application on the rendering server. The most straightforward
way to achieve is to have one TUIO client process per executed
HMI application instance. This defacto remote control could
also be included in the application in case the source code
of the application is available. Another way is to inject the
events with the help of a so called TUIO input bridge: the
TUIO messages are converted to the respective Windows UI
events and directly injected into the applications event queue.

TUIO has been primarily designed for touch surface appli-
cations, so - unlike in remote desktop protocols like RFB or
RDP - there are no specific messages for mouse or keyboard
interactions. However, TUIO offers the definition of custom
messages, which may be used for this purpose.

One potentially negative issue may be the lack of reliable
timing information. As TUIO relies on UDP too, loss of
packages or wrong package order may occur. This of course
may cause problems with interaction handling. However, with
the coming version of TUIO (2.0), a time stamp is added for
each message providing fine-grained timing information that
will mitigate this issue.

V. PERFORMANCE ISSUES

Because performance is the most important requirement, we
want to highlight some selected aspects of our prototype. High
performance of all steps is a crucial factor for providing a
high level of user experience. For a smooth video replay we
need at least 25 Frames Per Second streamed to the clients.
In addition, latency of video replay should be as low as
possible and application responsiveness as high as possible.
On the server side, scalability is an important issue: How
many applications may be executed, encoded and streamed on
one system? This section covers the performance examination
of different variants regarding the recording and encoding
combination phases. We have measured the performance on
two different systems, the first one being a desktop computer
and the second one being a powerful graphics workstation.

Desktop CPU: Core i7 - 2600 @3.4GHz - 4 Cores, 8 GB
RAM
GPU: Nvidia Quadro 600 (Fillrate: 10.2 GP/s)

Workstation CPU: 2xIntel Xeon X5690 @3.4Ghz - 6 Cores
(total 12 Cores), 24 GB RAM
GPU: 2xNvidia GTX 580 (Fillrate: 2 x 37.06
GP/s)

Figure 4 shows a series of tests over the Recording task
aiming to test the scalability when multiple applications are
recorded. All recorded applications have the same resolution
1600x1200.The results also show the Aero Glass Feature
decreasing the frame rate on both the Desktop and the even
more powerful Workstation beyond the constraint of 25fps.
Scalability, even on a high performance server is limited to
one up to three applications recorded simultaneously, which
would be unacceptable.

Figure 4. Recording

Figure 5 aims to show the scalability of our prototype re-
garding the recording and encoding multiple applications. All
recorded and encoded applications have the same resolution
1600x1200. The encoding has been performed with the two
analyzed video encoders: the GPU based NVEnc and the CPU
based x264.

Figure 5. Recording + Encoding

It can be seen that the system Desktop does not have
enough GPU power to allow a satisfying use of the GPU based
encoder. In contrast, the x264 based encoding is more robust
in terms of keeping up the frame rate. The tests on Workstation
show both the GPU based and the CPU based encoding
being significantly faster in all cases, so the selected approach
definitly scales. However, when running 9-10 applications one
can see the bottleneck from the recording task making its
presence felt.

VI. OPEN ISSUES AND FURTHER WORK

As this is work in progress, there are still many issues to
deal with. Below is a list with the most important challenges
which remain to be tackled in the near to middle future.

As shown in section V, there are still issues with recording
the applications. Recording scales too low, even if using a high
performance machine. Therefore we have to think of different
recording methods than the ones employed in our prototype.
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In addition, the current implementation causes a significant
latency when transmitting the video of around 500ms, making
the user’s interaction with the application quite uncomfortable.
One main reason is that it is usual to buffer videos on the client
side to provide a continuous replay. This is especially neces-
sary in environments with an unpredictable connection and
network quality. Assuming we have a powerful and reliable
production network, we might neglect connection issues. Thus
we might keep buffer sizes down, since a larger buffer size
in turn increases the playback latency. But buffer size is not
the only influence on latency. Naturally the latency decreases
considerably with lower resolutions. We assume the source of
the remaining latency being mainly the streaming server and
its configuration.

Another issue we plan to take care of in the near future
is server integration and scalability. Currently, the prototype
is made up from a number of different processes which
are loosely coupled (e.g., data interchange via loopback in-
terface) per application session. In the future, we plan a
tighter integration here. This is especially the case for the
server responsibilities concerning application start requests as
well as interaction mapping and injection. We believe tighter
integration may also decrease video latency.

VII. CONCLUSION

In this paper we presented our efforts regarding remote
rendering of applications in an industrial context. We described
the idea and approach of our work. Instead directly on the
machine, HMI applications are executed on a central server,
which streams the HMI application output as a video on
demand. User interactions are captured on the client’s device
and are sent back to the server. We described the concep-
tual steps in our approach (recording, encoding, streaming -
interaction capturing and injection) and selected aspects of
their prototypical implementation. In addition, we compared
the prototype performance on different target systems using
different recording and encoding methods. Our measurements
suggest an acceptable frame rate for generating a smooth
video, albeit not with the top quality resolutions (e.g. Full
HD). However, our preferred recording method didn’t prove
to be scalable enough. In addition, we still experience a high
latency of the video playback. We assume that its roots reside
within the streaming task. As pointed out, this is an issue we
are working on at the moment.

Considering these limitations, our prototype is not yet
ready for productive operation. Still we expect the approach
of remote rendering via video stream has a future. This is
demonstrated by the Online Gaming community and other
professional solutions. What works for games and other highly
interactive desktop applications, will also work for industrial
HMI Applications. The latter will also be executed in the
cloud and will be controllable from simple client devices with
video rendering capabilities. This will help to reduce both
deployment and maintenance costs, especially in large scale
scenarios, i.e. plants with a higher number of machines.
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